Reaction of Dithionite with Nitroxides. A New Possible Spin Trapping Agent of Superoxide Ion

EMANUELE ARGESE, EMIL10 F. ORSEGA, PAOLO VIGLINO

Institute of Physical Chemistry, University of Venice, Venice, Italy

and ADELIO RIG0

Laboratory of Biophysics and Molecular Biology, Institute of General Pathology, University of Padua, Padua, Italy

Received July 24, 1981

Although the formation of superoxide ion, O_2^7 , has been proposed in autoxidations and in oxygen metabolizing organisms, its detection is still a debated argument because of the low sensitivity and specificity of O_2^{\bullet} trapping agents [1]. These detection methods require the use of Cu, Zn superoxide dismutase (SOD), an enzyme which reacts with $0\frac{1}{2}$ at a rate close to the diffusion limit, and therefore O_2^T production is calculated from the fraction of the trapping reaction inhibited by SOD.

In the search for species able to react with O_2^7 , producing relatively stable free radicals such as nitroxides which can be detected by EPR spectroscopy at room temperature and at concentrations of the order of 10^{-7} M, new chemical species (which appear to meet these requirements) have been obtained from the reaction between nitroxides themselves and free radicals. This study describes the preparation of such a type of spin trap (NOS) from 4-amino-2,2,6,6-tetramethylpiperidinoxyl, (I), and SO_2^r radical and its used in the detection of short lived O_2^r radicals.

Experimental

Preparation of the 0; Spin Trapping Agent (NOS) The addition of small aliquots of $Na_2S_2O_4$ (which A sensitive autoxidation of NOS to nitroxide by in aqueous solutions give rise to the equilibrium molecular oxygen has been observed only at a pH $S_2O_4^-\neq 2SO_2^+$ [2]) into a nitrogen-bubbled $10^{-2}M$ I higher than 9, while the addition of $10^{-4}M$ H₂O₂ to solution buffered at pH 8.0 with 0.1 M sodium 10^{-3} M NOS regenerates nitroxide I at a rate of 2.1 μ phosphate determined the decrease of EPR spectrum *M* min⁻¹ which is completely independent of pH. of I until its complete disappearance when the molar Since, by addition of catalase at micromolar conratio [dithionite]/[I] ≈ 0.65 was reached. In these centrations, the H₂O₂ can be easily brought to conconditions the EPR spectrum of the reaction mixture centrations which are orders of magnitude lower than was completely flat, indicating that the species SO_2^* 10^{-4} *M*, the increase of EPR signal due to H₂O₂ can was still absent. Voltammetric measurements showed be completely abolished. Efforts to elucidate directly the same behaviour. In fact the polarographic reduc- the chemical structure of NOS has been unsuccessful tion waves of I and of $S_2O_4^{\pi}$, which occur at -330 because of the impossibility of its separation from

tively, were completely absent at a ratio [dithionite] / $[I]_0 \approx 0.65$, while no polarographic wave due to the reaction product NOS could be observed.

The reaction mixture so obtained, containing the reaction product between I and SO_2^{τ} , can be stored, frozen under nitrogen, for several days.

The addition of 1 $M H_2O_2$ to the NOS solution regenerates the starting nitroxide I, with a yield of 90%, as it results from EPR spectra taken after a hour from the H_2O_2 addition.

SO2 Determination

Small portions of the analysing solutions were brought to pH 1.0 by concentrated HCl and then nitrogen was bubbled into solutions to withdraw the $SO₂$ eventually formed. The stripped $SO₂$ was measured by differential pulse voltammetry [3]. In the case of NOS solutions a ratio $\text{[SO}_2]/\text{[1]}_0 \approx 0.1$ has been calculated, where $[I]_0$ is the starting nitroxide concentration.

Results and Discussion

Steady-state concentrations of superoxide radicals have been generated by slow perfusion of a DMSO solution containing $0.5 M 18$ -crown-6 and $0.4 M KO₂$ into buffered aqueous solutions efficiently stirred. The addition of 10^{-3} *M* NOS to this system results in an EPR spectrum identical to that of I, which suggests that the reaction between NOS and O_2^{τ} leads to the formation of the nitroxide I again. In these conditions the SO_2 analysis in the reaction system gives a ratio $[SO_2]/[1]$ formed $\simeq 1$ independently of he $0^{\frac{1}{2}}$ added. The addition of 10^{-6} *M* SOD strongly inhibits the formation of nitroxide I (see Fig. 1) while the presence of 10^{-3} *M* NaN₃ has practically no effect on the rate of appearance of the EPR signal. Since NaN₃ scavenges efficiently ${}^{1}\Delta O_{2}$ [4], which according to some authors is generated in the spontaneous dismutation of O_2^T [5], it appears that ${}^{1}\Delta$ O₂ is not implicated in the formation of nitroxide I from NOS.

and -420 mV vs saturated calomel electrode respec- aqueous solutions. However, the formation of SO_2

Fig. 1. Rates of formation of 4-amino-2, 2, 6, 6-tetramethylpiperidinoxyl when 0.4 *M* O_2^T in DMSO as KO₂-18-crown-6 complex was added continuously with efficient stirring into buffered solutions containing 10^{-3} *M* NOS and 5×10^{-7} *M* catalase. Rate of O_2^2 introduction 4×10^{-4} *M* min⁻¹. Curve A, 0.1 *M* sodium borate pH 8.9. Curve B, 0.1 *M* potassium phosphate pH 8.9. Curve C, as curve A plus 10^{-6} *M* SOD. Curve D, as B plus 10^{-6} *M* SOD.

and I in equimolecular amounts in the reaction between NOS and O_2^r , together with the practical absence of SO_2 in the reaction between I and

ithionite, suggests that dithionite does not act as ducing agent of \sqrt{N} group of nitroxide and that therefore NOS should be formed in a coupling reacon between \overline{NO} group and $SO₂²$ radicals leading

to a structure of the type
$$
N-O-S\begin{matrix} & 0 \\ & \\ & \\ 0 & \end{matrix}
$$
, which

in turn is oxidized by O_2^r according to the following reaction scheme :

$$
N - 0 - S \left\langle \bigcirc^{O(-)}_0 + O_2^{\mathbf{r}} \longrightarrow \bigcirc N + SO_2 + H_2O_2 \right\rangle
$$

References

- 1 J. M. McCord, J. D. Crapo and 1. Fridovich in 'Superoxide and Superoxide Dismutase', A Michelson, J. McCord, I. Fridovich E., Acad. Press., London, 11 (1977).
- 2 L. Burlamacchi, S. Guerrini and E. Tiezzi, *Trans. Far. Soc.*, *65, 469 (1969).*
- *3* A. Rigo, M. Cherido, E. Argese, P. Vighno and C. Dejak, *The Analyst, 106, 474 (1981).*
- *4 N.* Hasty, P. B. Merkel, P. Radtick and D. Kearns, *Tetrahedron Letters, 1, 49 (1972).*
- *5* D. Kearns, Chem. *Rev.,* 71, 395 (1971).